skip to main content


Search for: All records

Creators/Authors contains: "Soares-Furtado, Melinda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Metal-poor stars in the Milky Way (MW) halo display large star-to-star dispersion in theirr-process abundance relative to lighter elements. This suggests a chemically diverse and unmixed interstellar medium (ISM) in the early universe. This study aims to help shed light on the impact of turbulent mixing, driven by core-collapse supernovae (cc-SNe), on ther-process abundance dispersal in galactic disks. To this end, we conduct a series of simulations of small-scale galaxy patches which resolve metal-mixing mechanisms at parsec scales. Our setup includes cc-SNe feedback and enrichment fromr-process sources. We find that the relative rate of ther-process events to cc-SNe is directly imprinted on the shape of ther-process distribution in the ISM with more frequent events causing more centrally peaked distributions. We consider also the fraction of metals that is lost on galactic winds and find that cc-SNe are able to efficiently launch highly enriched winds, especially in smaller galaxy models. This result suggests that smaller systems, e.g., dwarf galaxies, may require higher levels of enrichment in order to achieve similar meanr-process abundances as MW-like progenitors systems. Finally, we are able to place novel constraints on the production rate ofr-process elements in the MW,6×107Myr1ṁrp4.7×104Myr1, imposed by accurately reproducing the mean and dispersion of [Eu/Fe] in metal-poor stars. Our results are consistent with independent estimates from alternate methods and constitute a significant reduction in the permitted parameter space.

     
    more » « less
  2. Abstract

    The engulfment of substellar bodies (SBs), such as brown dwarfs and planets, by giant stars is a possible explanation for rapidly rotating giants, lithium-rich giants, and the presence of SBs in close orbits around subdwarfs and white dwarfs. We perform three-dimensional hydrodynamical simulations of the flow in the vicinity of an engulfed SB. We model the SB as a rigid body with a reflective surface because it cannot accrete. This reflective boundary changes the flow morphology to resemble that of engulfed compact objects with outflows. We measure the drag coefficients for the ram-pressure and gravitational drag forces acting on the SB, and use them to integrate its trajectory inside the star. We find that engulfment can increase the luminosity of a 1Mstar by up to a few orders of magnitude. The time for the star to return to its original luminosity is up to a few thousand years when the star has evolved to ≈10Rand up to a few decades at the tip of the red giant branch (RGB). No SBs can eject the envelope of a 1Mstar before it evolves to ≈10Rif the orbit of the SB is the only energy source contributing to the ejection. In contrast, SBs as small as ≈10MJupcan eject the envelope at the tip of the RGB. The numerical framework we introduce here can be used to study planetary engulfment in a simplified setting that captures the physics of the flow at the scale of the SB.

     
    more » « less
  3. ABSTRACT We demonstrate that the James Webb Space Telescope (JWST) can detect infrared (IR) excess from the blended light spectral energy distribution of spatially unresolved terrestrial exoplanets orbiting nearby white dwarfs. We find that JWST is capable of detecting warm (habitable-zone; Teq = 287 K) Earths or super-Earths and hot (400–1000 K) Mercury analogues in the blended light spectrum around the nearest 15 isolated white dwarfs with 10 h of integration per target using MIRI’s medium-resolution spectrograph (MRS). Further, these observations constrain the presence of a CO2-dominated atmosphere on these planets. The technique is nearly insensitive to system inclination, and thus observation of even a small sample of white dwarfs could place strong limits on the occurrence rates of warm terrestrial exoplanets around white dwarfs in the solar neighbourhood. We find that JWST can also detect exceptionally cold (100–150 K) Jupiter-sized exoplanets via MIRI broad-band imaging at $\lambda = 21\, \mathrm{\mu m}$ for the 34 nearest (<13 pc) solitary white dwarfs with 2 h of integration time per target. Using IR excess to detect thermal variations with orbital phase or spectral absorption features within the atmosphere, both of which are possible with long-baseline MRS observations, would confirm candidates as actual exoplanets. Assuming an Earth-like atmospheric composition, we find that the detection of the biosignature pair O3+CH4 is possible for all habitable-zone Earths (within 6.5 pc; six white dwarf systems) or super-Earths (within 10 pc; 17 systems) orbiting white dwarfs with only 5–36 h of integration using MIRI’s low-resolution spectrometer. 
    more » « less
  4. ABSTRACT TIC 470710327, a massive compact hierarchical triple-star system, was recently identified by NASA’s Transiting Exoplanet Survey Satellite. TIC 470710327 is comprised of a compact (1.10 d) circular eclipsing binary, with total mass $\approx 10.9\!-\!13.2\, \rm {M_{\odot }}$, and a more massive $\approx 14\!-\!17\, \rm {M_{\odot }}$ eccentric non-eclipsing tertiary in a 52.04 d orbit. Here, we present a progenitor scenario for TIC 470710327 in which ‘2 + 2’ quadruple dynamics result in Zeipel–Lidov–Kozai oscillations that lead to a contact phase of the more massive binary. In this scenario, the two binary systems should form in a very similar manner, and dynamics trigger the merger of the more massive binary either during late phases of star formation or several Myr after the zero-age main sequence, when the stars begin to expand. Any evidence that the tertiary is a highly magnetized (∼1–10 kG), slowly rotating blue main-sequence star would hint towards a quadruple origin. Finally, our scenario suggests that the population of inclined compact multiple-stellar systems is reduced into coplanar systems, via mergers, late during star formation or early in the main sequence. The elucidation of the origin of TIC 470710327 is crucial in our understanding of multiple massive star formation and evolution. 
    more » « less
  5. Abstract We present design considerations for the Transiting Exosatellites, Moons, and Planets in Orion (TEMPO) Survey with the Nancy Grace Roman Space Telescope. This proposed 30 days survey is designed to detect a population of transiting extrasolar satellites, moons, and planets in the Orion Nebula Cluster (ONC). The young (1–3 Myr), densely populated ONC harbors about a thousand bright brown dwarfs (BDs) and free-floating planetary-mass objects (FFPs). TEMPO offers sufficient photometric precision to monitor FFPs with M >1 M J for transiting satellites. The survey is also capable of detecting FFPs down to sub-Saturn masses via direct imaging, although follow-up confirmation will be challenging. TEMPO yield estimates include 14 (3–22) exomoons/satellites transiting FFPs and 54 (8–100) satellites transiting BDs. Of this population, approximately 50% of companions would be “super-Titans” (Titan to Earth mass). Yield estimates also include approximately 150 exoplanets transiting young Orion stars, of which >50% will orbit mid-to-late M dwarfs. TEMPO would provide the first census demographics of small exosatellites orbiting FFPs and BDs, while simultaneously offering insights into exoplanet evolution at the earliest stages. This detected exosatellite population is likely to be markedly different from the current census of exoplanets with similar masses (e.g., Earth-mass exosatellites that still possess H/He envelopes). Although our yield estimates are highly uncertain, as there are no known exoplanets or exomoons analogous to these satellites, the TEMPO survey would test the prevailing theories of exosatellite formation and evolution, which limit the certainty surrounding detection yields. 
    more » « less
  6. Abstract

    The extent to which turbulence mixes gas in the face of recurrent infusions of fresh metals by supernovae (SN) could help provide important constraints on the local star formation conditions. This includes predictions of the metallicity dispersion among metal-poor stars, which suggests that the interstellar medium was not very well mixed at these early times. The purpose of thisLetteris to help isolate, via a series of numerical experiments, some of the key processes that regulate turbulent mixing of SN elements in galactic disks. We study the gas interactions in small simulated patches of a galaxy disk with the goal of resolving the small-scale mixing effects of metals at parsec scales, which enables us to measure the turbulent diffusion coefficient in various galaxy environments. By investigating the statistics of variations ofαelements in these simulations, we are able to derive constraints not only on the allowed range of intrinsic yield variations in SN explosions but also on the star formation history of the Milky Way. We argue that the observed dispersion of [Mg/Fe] in metal-poor halo stars is compatible with the star-forming conditions expected in dwarf satellites or in an early low-star-forming Milky Way progenitor. In particular, metal variations in stars that have not been phase-mixed can be used to infer the star-forming conditions of disrupted dwarf satellites.

     
    more » « less
  7. Abstract Planetary engulfment events have long been proposed as a lithium (Li) enrichment mechanism contributing to the population of Li-rich giants ( A (Li) ≥ 1.5 dex). Using MESA stellar models and A (Li) abundance measurements obtained by the GALAH survey, we calculate the strength and observability of the surface Li enrichment signature produced by the engulfment of a hot Jupiter (HJ). We consider solar-metallicity stars in the mass range of 1–2 M ⊙ and the Li supplied by a HJ of 1.0 M J . We explore engulfment events that occur near the main-sequence turn-off (MSTO) and out to orbital separations of R ⋆ ∼ 0.1 au = 22 R ⊙ . We map our results onto the Hertzsprung–Russell Diagram, revealing the statistical significance and survival time of Li enrichment. We identify the parameter space of masses and evolutionary phases where the engulfment of a HJ can lead to Li enrichment signatures at a 5 σ confidence level and with meteoritic abundance strengths. The most compelling strengths and survival times of engulfment-derived Li enrichment are found among host stars of 1.4 M ⊙ near the MSTO. Our calculations indicate that planetary engulfment is not a viable enrichment pathway for stars that have evolved beyond the subgiant branch. For these sources, observed Li enhancements are likely to be produced by other mechanisms, such as the Cameron–Fowler process or the accretion of material from an asymptotic giant branch companion. Our results do not account for second-order effects, such as extra mixing processes, which can further dilute Li enrichment signatures. 
    more » « less
  8. The engulfment of substellar bodies (SBs) such as brown dwarfs and planets has been invoked as a possible explanation for the presence of SBs orbiting subdwarfs and white dwarfs, rapidly rotating giants, and lithium-rich giants. We perform three-dimensional hydrodynamical simulations of the flow in the vicinity of an SB engulfed in a stellar envelope. We model the SB as a rigid body with a reflective boundary because it cannot accrete. This reflective boundary changes the flow morphology to resemble that of engulfed compact objects with outflows. We measure the drag coefficients for the ram pressure and gravitational drag forces acting on the SB, and use them to integrate its trajectory during engulfment. We find that SB engulfment can increase the stellar luminosity of a 1M⊙ star by up to a few orders of magnitude for timescales of up to a few thousand years when the star is ≈10R⊙ and up to a few decades at the tip of the red giant branch. We find that no SBs can eject the envelope of a 1M⊙ star before it evolves to ≈10R⊙ . In contrast, SBs as small as ≈10MJup can eject the envelope at the tip of the red giant branch, shrinking their orbits by several orders of magnitude in the process. The numerical framework we introduce here can be used to study the dynamics of planetary engulfment in a simplified setting that captures the physics of the flow at the scale of the SB. 
    more » « less
  9. The engulfment of substellar bodies (SBs) such as brown dwarfs and planets has been invoked as a possible explanation for the presence of SBs orbiting subdwarfs and white dwarfs, rapidly rotating giants, and lithium-rich giants. We perform three-dimensional hydrodynamical simulations of the flow in the vicinity of an SB engulfed in a stellar envelope. We model the SB as a rigid body with a reflective boundary because it cannot accrete. This reflective boundary changes the flow morphology to resemble that of engulfed compact objects with outflows. We measure the drag coefficients for the ram pressure and gravitational drag forces acting on the SB, and use them to integrate its trajectory during engulfment. We find that SB engulfment can increase the stellar luminosity of a 1M⊙ star by up to a few orders of magnitude for timescales of up to a few thousand years when the star is ≈10R⊙ and up to a few decades at the tip of the red giant branch. We find that no SBs can eject the envelope of a 1M⊙ star before it evolves to ≈10R⊙ . In contrast, SBs as small as ≈10MJup can eject the envelope at the tip of the red giant branch, shrinking their orbits by several orders of magnitude in the process. The numerical framework we introduce here can be used to study the dynamics of planetary engulfment in a simplified setting that captures the physics of the flow at the scale of the SB. 
    more » « less